a2 United States Patent

Cheng et al.

US009329843B2

US 9,329,843 B2
May 3, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

COMMUNICATION STACK FOR
SOFTWARE-HARDWARE CO-EXECUTION
ON HETEROGENEOUS COMPUTING
SYSTEMS WITH PROCESSORS AND
RECONFIGURABLE LOGIC (FPGAS)

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Perry S. Cheng, Cambridge, MA (US);
Rodric Rabbah, Yonkers, NY (US);
Sunil K. Shukla, Tarrytown, NY (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 368 days.

Appl. No.: 13/913,803

Filed: Jun. 10, 2013
Prior Publication Data
US 2014/0208299 A1 Jul. 24, 2014

Related U.S. Application Data

Provisional application No. 61/756,146, filed on Jan.
24, 2013.

Int. Cl1.

GO6F 9/45 (2006.01)

GO6F 17/50 (2006.01)

U.S. CL

CPC GO6F 8/41 (2013.01); GO6F 17/5045

(2013.01)
Field of Classification Search
CPC e, GOGF 17/5054
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,553,446 B1* 4/2003 Millerccccovevvrnennen. 710/307
6,832,181 B1* 12/2004 Boldingetal. 703/13
6,944,173 B1* 9/2005 Jonesetal. 370/413
8,776,190 B1* 7/2014 Cavageetal.cccccoee.. 726/5
2005/0091441 Al* 4/2005 Qietal. ... RAVARVA)
2005/0251707 Al* 11/2005 Alexanderetal. 714/49
2008/0043734 Al* 2/2008 Kinoshitaetal. 370/390
(Continued)
OTHER PUBLICATIONS

“Intel Introduces Configurable Intel Atom-based Processor”, Nov.
2010, Intel.com, accessed Jun. 10, 2013, pp. 1-5.

(Continued)

Primary Examiner — Chat Do

Assistant Examiner — Sergio] Curbelo, 11

(74) Attorney, Agent, or Firm — Scully, Scott, Murphy &
Presser, P.C.; Nidhi G. Kissoon

(57) ABSTRACT

A communication stack for software-hardware co-execution
on heterogeneous computing systems with processors and
reconfigurable logic, in one aspect, may comprise a crossbar
operable to connect hardware user code and functioning as a
platform independent communication layer. A physical inter-
face interfaces to the reconfigurable logic. A physical inter-
face bridge is connected to the cross and the physical inter-
face. The physical interface bridge connects the crossbar and
the physical interface via a platform specific translation layer
specific to the reconfigurable logic. The crossbar, the physical
interface, and the physical interface bridge may be instanti-
ated in response to the hardware user code being generated,
the crossbar instantiated with associated parameters compris-
ing one or more routes and associated data widths. The hard-
ware user code is assigned a unique virtual route in the cross-
bar.

5 Claims, 4 Drawing Sheets

402~

GENERATE AHARDWARE USER CODE CORRESPONDING
TOATASKTO BE RELOCATED TO THE RECONFIGURABLE LOGIC

l

404~

INSTANTIATE ACROSSBAR OPERABLE TO FUNCTION AS
APLATFORM INDEPENDENT COMMUNICATION LAYER

l

406~

CONNECT THE HARDWARE USER CODE TO THE CROSSBAR
ANDASSIGN AUNIQUE VIRTUAL ROUTE IN THE CROSSBAR
TO THE HARDWARE USER CODE

|

408~

INSTANTIATE A PHYSICAL INTERFACE INTERFACING
TO THE RECONFIGURABLE LOGIC

1

410~

INSTANTIATE A PHYSICAL INTERFACE BRIDGE TO CONNECT
TO THE CROSSBAR AND THE PHYSICAL INTERFACE

US 9,329,843 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0145934 Al* 6/2011 Abramovicietal. ... 726/30
2014/0007230 Al* 1/2014 Janietal 726/22
OTHER PUBLICATIONS

Zyng-7000: All Programable SoC: Technical Reference Manual,
UGS8S (v 1.5) Mar. 2013, pp. 1-1770, Xilinx, Inc.

Auerbach et al., “A Complier and Runtime for Heterogeneous Com-
puting,” DAC, Jun. 2012, pp. 271-276, AMC, New York, NY.
Auerbach et al., “Lime: a Java-Compatible and Synthesizable Lan-
guage for Hetergeneous Architectures,” OOPSLA/ SPLASH, Oct.
2010, pp. 89-108, AMC, New York, NY.

Auerbach et al., “LIME: The Liquid Metal Programming Language
Reference Manual,” IBM Research, May 2010, pp. 1-141.

Dubach et al., “Compiling a High-Level Language for GPUs: (via
Language Support for Architectures and Compliers)”, PLDI Jun.
2012, pp. 1-12, AMC, New York, NY.

Eguro, “SIRC: An Extendable Reconfigurable Computing Commu-
nication APL,” FCCM, May 2010, pp. 135-138.

Khronos OpenCL Working Group, “The OpenCL Specification,”
Jun. 2011, pp. 1-385.

Kulp, “OpenCPI Technical Summary,” May 2010, pp. 1-15.
Nalltech, “PClIe-280-8-lane PCI Express 2.0 Accelerator card featur-
ing Xilinx Virtex-5 FPGA and Memory,” Mar. 2011, p. 1.

Saldana et al., “MPI as an Abstraction for Software-Hardware Inter-
action for HPRCs,” HPRCTA, Nov. 2008, pp. 1-10, IEEE.

* cited by examiner

U.S. Patent May 3, 2016 Sheet 1 of 4 US 9,329,843 B2

16~{ h
™~ LIME APPLICATION
. J
) ¥ S
108~)
™~ LIME RUNTIVE
. J
1 Y|
112~ COPEN()) (SEND()) (RECV()) (CLOSE()
SN 0CTL)
R S— | R, oy
LU DEVICE DRIVERS |
e S ClcH
Y S .
106+~ Yy
----- ; PHY
:_'_'_'_'_'I_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'}_'_'_'_'_'_'_'\\
104~ XPHY BRIDGE |
HW emee- [S ;o ’
102~ h
™ CROSSBAR
\. J
) VW
1~ h
™ USER P
\. J

| 1 PLATFORM DEPENDENT [_] PLATFORM INDEPENDENT

FIG. 1

US 9,329,843 B2

Sheet 2 of 4

May 3, 2016

U.S. Patent

TINNYHO TOHINOD <----
TINNYHOYLYQ <—— af)-,
TINNYHO NOLLYZITHLLIN] ~—-— JOVA4ILNI AHd AUYLINAO¥d <
| 31N0Y g ey |
(EZEIOR) nE— -
[0:12) Jerep) ——s! L_{f-2
fpI) f— i i
[“ “ “
F—-— (0 °t: N “
R pe—— - m
[0:1-NIvLYa [o:g)lpiensif ™ | o “ o
MOV [(FEANL2l: o C I AV
AQY fpiu “ “ “
e | 3100Y o L o o |
/ / //. /1.
90z 0z 20 80

U.S. Patent May 3, 2016 Sheet 3 of 4 US 9,329,843 B2

|_~304

FPGA

\
=
=
=

|

(toLowerCase)/302

FIG. 3

CPU

306 \C mSg. source)

U.S. Patent May 3, 2016 Sheet 4 of 4 US 9,329,843 B2

402~] GENERATE AHARDWARE USER CODE CORRESPONDING
TOATASK TO BE RELOCATED TO THE RECONFIGURABLE LOGIC

Y

404~ INSTANTIATE ACROSSBAR OPERABLE TO FUNCTION AS
APLATFORM INDEPENDENT COMMUNICATION LAYER

Y

106 CONNECT THE HARDWARE USER CODE TO THE CROSSBAR
™ ANDASSIGN A UNIQUE VIRTUAL ROUTE IN THE CROSSBAR
TO THE HARDWARE USER CODE

Y

408~ INSTANTIATE A PHYSICAL INTERFACE INTERFACING
TO THE RECONFIGURABLE LOGIC

Y

410~ INSTANTIATE APHYSICAL INTERFACE BRIDGE TO CONNECT
TO THE CROSSBAR AND THE PHYSICAL INTERFACE

FIG. 4

US 9,329,843 B2

1
COMMUNICATION STACK FOR
SOFTWARE-HARDWARE CO-EXECUTION
ON HETEROGENEOUS COMPUTING
SYSTEMS WITH PROCESSORS AND
RECONFIGURABLE LOGIC (FPGAS)

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/756,146, filed on Jan. 24, 2013, which is
incorporated herein by reference in its entirety. This applica-
tion is related to co-owned U.S. patent application Ser. No.
13/196,300, filed on Aug. 2, 2011, and entitled TECHNIQUE
FOR COMPILING AND RUNNING HIGH-LEVEL PRO-
GRAMS ON HETEROGENEOUS COMPUTERS, which
application is incorporated herein by reference in its entirety.

FIELD

The present application relates generally to computers, and
more particularly to software-hardware bridging in heteroge-
neous computing systems.

BACKGROUND

While there are numerous field programmable gate array
(FPGA)-based system offerings on the market today, there is
no single accepted programming standard that facilitates
using them. FPGAs are predominantly programmed with
hardware description languages (HDLs) and conventional
processors are programmed with modern high-level lan-
guages. In addition, the compilation and design flow for each
of these targets are completely different. Programming
FPGAs (hardware) requires the use of electronic design auto-
mation (EDA) toolflows that are complex and time consum-
ing to synthesize the HDL into a circuit, whereas program-
ming CPUs (software) enjoys the benefits of well established
instruction set architectures (ISAs) and advanced compilers
that offer a much simpler programming experience. The lack
of (1) a single semantic programming domain, (2) standard
FPGA device interfaces, and (3) an integrated toolflow for
programming across the hardware-software boundary means
the burden is largely on the programmer to manage the het-
erogeneous complexity.

A number of companies and products are focused on low-
ering the programming burden associated with FPGAs, but
do not address the CPU/FPGA divide directly. Instead, their
aim is to raise the programming abstractions offered by HDLs
like VHDL and Verilog from the level of gates, muxes and
flip-flops to be on par with modern high-level programming
languages such as C/C++ and Java. In doing so, they offer the
possibility for skilled software developers to design hardware
through high-level synthesis: the compilation and synthesis
of logic from high-level languages.

Despite many advances in high-level synthesis, program-
ming FPGAs remains difficult, in part because the final inte-
gration of software and hardware is a challenge that the pro-
grammer bares. A typical off-the-shelf FPGA device is
offered as a raw fabric with little or no infrastructural intel-
lectual property (IP) (also referred to as service layer in this
disclosure) to connect it to another device or component in a
heterogeneous system. The term “IP” in hardware technology
(and henceforth in this disclosure) is used to refer to a hard-
ware design block with a well-defined interface and function-

ality.

10

15

20

25

30

35

40

45

50

55

60

65

2

There are several vendors that create custom FPGA boards
with a highly tuned 1/O infrastructure to support communi-
cation interfaces such as PCle, and Ethernet and off-chip
memory resources such as DDR-SDRAM, QDR-SRAM etc.
The users can implement their applications either in HDL or
using a high level synthesis framework and connect it with the
infrastructure provided by the board vendor. This leads to a
faster time-to-market as users can focus on developing their
core application and the communication and storage infra-
structure is provided by the board vendor. However, this
prevents portability as the vendor infrastructure is often pro-
prietary and created particularly for one board.

BRIEF SUMMARY

A system providing a communication stack for software-
hardware co-execution on heterogeneous computing systems
with processors and reconfigurable logic, in one aspect, may
comprise a crossbar operable to connect hardware user code
and functioning as a platform independent communication
layer. A physical interface interfaces to the reconfigurable
logic. A physical interface bridge may be connected to the
crossbar and the physical interface, the physical interface
bridge connecting the crossbar and the physical interface via
a platform specific translation layer specific to the reconfig-
urable logic. The crossbar, the physical interface, and the
physical interface bridge may be instantiated in response to
the hardware user code being generated, the crossbar instan-
tiated with associated parameters comprising one or more
routes and associated data widths, the hardware user code
being assigned a unique virtual route in the crossbar.

A method for a communication stack for software-hard-
ware co-execution on heterogeneous computing systems with
processors and reconfigurable logic, in one aspect, may com-
prise generating a hardware user code corresponding to a task
to be relocated to the reconfigurable logic. The method may
also comprise instantiating a crossbar operable to function as
a platform independent communication layer, the crossbar
instantiated with associated parameters comprising one or
more routes and associated data widths. The method may also
comprise connecting the hardware user code to the crossbar
and assigning a unique virtual route in the crossbar to the
hardware user code, wherein communication to the hardware
user code is performed via the unique virtual route. The
method may further comprise instantiating a physical inter-
face interfacing to the reconfigurable logic. The method may
further comprise instantiating a physical interface bridge to
connect to the crossbar and the physical interface, the physi-
cal interface bridge connecting the crossbar and the physical
interface via a platform specific translation layer specific to
the reconfigurable logic.

A computer readable storage medium storing a program of
instructions executable by a machine to perform one or more
methods described herein also may be provided.

Further features as well as the structure and operation of
various embodiments are described in detail below with ref-
erence to the accompanying drawings. In the drawings, like
reference numbers indicate identical or functionally similar
elements.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 illustrates an IP bridge spanning hardware and soft-
ware in one embodiment of the present disclosure.

US 9,329,843 B2

3

FIG. 2 illustrates the top level design, PHY to user IP
bridge in hardware, that is synthesized for a given device in
one embodiment of the present disclosure.

FIG. 3 shows an example mapping of tasks ina CPU and a
FPGA in one embodiment of the present disclosure.

FIG. 4 is a flow diagram illustrating a method in one
embodiment of the present disclosure.

DETAILED DESCRIPTION

Example heterogeneous systems include FPGA-based sys-
tems that integrate reconfigurable architectures with conven-
tional processors. However, the burden of managing the cod-
ing complexity that is intrinsic to these systems falls entirely
on the programmer. This limits the proliferation of these
systems as only highly-skilled programmers and FPGA
developers can unlock their potential. The present disclosure
in one embodiment addresses the programming complexity
attributed to heterogeneous FPGA-based systems. A feature
of' a methodology of the present disclosure in one embodi-
ment may include vertically integrated development lifecycle
that appeals to skilled software developers. A canonical IP
bridge spanning software and hardware may be provided that
is designed to offer a uniform communication methodology
between software and hardware, and that is applicable across
a wide range of platforms available off-the-shelf.

Field programmable gate arrays (FPGAs) may be used in
place of application specific integrated circuits (ASICs) and
application specific standard products (ASSPs) for imple-
menting fixed function logic. FPGAs offer the increasing
device density and performance as well as high design flex-
ibility and lower small volume costs. There are various kinds
of FPGA-based systems ranging from heterogeneous sys-
tems targeted at high-performance computing (HPC) that
tightly couple FPGAs with conventional central processing
units (CPUs) (e.g., Convey Computers), to mid-range com-
mercial-off-the-shelf workstations that use peripheral com-
ponent inter connect express (PCle)-attached FPGAs, to low-
end embedded systems that integrate embedded processors
directly into the FPGA fabric or on the same chip.

A design and implementation of an IP bridge (communi-
cation stack) spanning software and hardware in the present
disclosure may address the conventional processor(s)/config-
urable processor(s) (e.g., CPU/FPGA) divide directly. In one
aspect, the IP bridge of the present disclosure may permit the
integration of new FPGA-based devices into a platform. In
addition, an integrated toolchain (a set of programming or
development tools for a computing product) may be provided
that may significantly lower the engineering burden on pro-
grammers and frees them from using complex EDA toolflows
directly.

FIG. 1 illustrates an IP bridge spanning hardware and soft-
ware. A hardware service layer may be presented that pro-
vides I/O capabilities so that the user code may exchange data
with the host. Thus, the service layer allows communication
between a host machine (e.g., JVM) application and a native
device (e.g., FPGA). In one embodiment of the present dis-
closure, the FPGA service layer includes the following three
IP components.

Crossbar (102). All user application code (either generated
using compiler or manually written in HDL) is con-
nected to a crossbar 102 which serves as a platform
independent communication layer.

XPHY Bridge (104). The crossbar 102 connects to the
PHY 106 through a platform specific translation layer.

10

15

20

25

30

40

45

50

55

60

65

4

PHY (106). The PHY IP is usually provided by a third party
(e.g., platform vendor). It implements a protocol specific
to the communication medium (e.g., PCle).

The analogous components in software may be imple-
mented in a compiler runtime 108 to interface to the FPGA
device driver 110. An example of such compiler may be a
Lime compiler. Lime compiler will be reviewed in more
detail below as an example programming language that may
implement a software part of the IP bridge in one embodiment
of the present disclosure.

The crossbar may be embedded in the compiler runtime
and match the implementation of the crossbar IP (e.g., 102) in
hardware. For instance, the crossbar is embedded in the Lime
runtime 108 and matches the implementation of the crossbar
IP 102 in hardware. The XPHY bridge represents the inter-
action between the compiler runtime 108 and the device
driver 110. This may be achieved via a thin interface called
IOCTL 112, an abbreviation of I/O control.

In FIG. 1, crossbar 102, user IP 114, IOCTL 112, compiler
runtime 108 and application program 116 are platform inde-
pendent. Device drivers 110, PHY 106 and XPHY bridge 104
are platform dependent. Data may be communicated from the
software IOCTL layer 112 to the device drivers 110, which
for example may move the data via direct memory access
(DMA) to the FPGA. The data may be routed through the
hardware PHY 106 and crossbar 102 to a loopback circuit
(e.g., which sends data back to the software IOCTL layer 112.
IOCTL and Device Driver

The IOCTL interface 112 presents a canonical set of pro-
cedures to the compiler runtime that is irrespective of the
physical layer between host and device. The host is assumed
to be a conventional cache-coherent multicore.

The interface 112 may include the following four proce-
dures: open, close, send, and recv. In one aspect, the interface
112 facilitates the rapid integration of FPGA devices which
typically offer few standard programming interfaces if at all.
The IOCTL interface 112 is designed to support streaming as
well as batch-style communication that is either synchronous
or asynchronous in nature.

Table 1 illustrates examples of several instances of the
IOCTL interface implemented for a number of different plat-
forms.

TABLE 1

IOCTL examples.

Device PHY FPGA

Nallatech PCIe280 PCle x8 Virtex5 LX330T
PLDA XpressGX4LP PCle x8 Stratix IV GX530
XUPVS5 UART Virtex 5 LX110T
Xilinxk ML505 UART Virtex 5 LX50T
Avnet LX9 UART Spartan 6 LX9
HDL Simulators TCP/IP —

In each case, the porting required to support the device was
limited to the platform dependent components of the service
layer. The model has proved sufficiently flexible to support
both high bandwidth PCle devices with Xilinx and Altera
FPGA platforms, and low-bandwidth devices attached over
UART. The same model may be used to support co-execution
of Lime tasks between the host architecture and HDL simu-
lators that include the Cadence Incisive Enterprise Simulator,
Mentor Graphics Modelsim, and the open source Icarus Ver-
ilog simulator. Both synchronous and asynchronous execu-
tion may be supported.

US 9,329,843 B2

5

The UART-attached devices may be enabled via reading
and writing over UART, which amount to transactions over a
memory-mapped file descriptor. The IOCTL interface may be
implemented as follows in one embodiment of the present
disclosure.
long handle=open(char*bitfile, int deviceld)
void close(long handle)
int count=send(long handle, byte[| sendBuffer, int offset, int

length, int timeout)
int count=recv(long handle, byte[| recvBuffer, int offset, int

length, int timeout)

“open” is responsible for preparing a specified device for
1/0. This includes loading the bitfile onto the FPGA and
reserving any required resources. The procedure returns a
system-specific handle which is used for all subsequent com-
munication with that device. If a task is relocated to an HDL
simulator, open launches the desired simulator and configures
it with the HDL to simulate. In this case, the bitfile corre-
sponds to an archive containing all the relevant sources,
including a Lime-specific (compiler-specific) test bench that
serves as the device driver and manages the 1/O.

“close” releases the resources associated with the device.
This includes shutdown of the simulation process if closing
an HDL simulator instead of a physical FPGA device.

“send” attempts to transfer the contents of the given byte
buffer (sendBuffer), starting at the specified byte offset, to the
device. The amount of data (in bytes) to transmit is given by
length. In one embodiment of the present disclosure, the call
is blocking and will not return until either all the bytes are sent
or the request times out. A timeout is permitted if the time
since the call has equaled or exceeded the given timeout
threshold. A value of zero for the timeout indicates that timing
out is not allowed and the procedure blocks until the transac-
tion completes. The procedure sets the count to the number of
bytes actually transmitted upon return.

“recv” requests that up to length number of bytes be read
from the FPGA and written into the given byte buffer
(recvBuffer) starting at the specified byte offset. In one
embodiment of the present disclosure, the call is blocking and
will not return until the requested number of bytes is received
or the request times out. As is the case with send, a timeout is
permitted if the time since the call has equaled or exceeded
the specified threshold; timeout is not permitted if the value of
timeout is zero. The procedure sets the count to the number of
bytes actually received upon return.

A thread-safe implementation of this interface may be
provided so that calls to send and receive can occur on dif-
ferent threads, in full duplex mode. In one embodiment of the
present disclosure, each send (receive) is atomic in nature,
and hence two or more sends (receives) may not interleave. If
two concurrent calls to send are made, the implementation
finishes the first send request before handling the second.

The Lime runtime supports both synchronous and asyn-
chronous communication models. Synchronous communica-
tion follows the batch execution model where the runtime
manages the I/O synchronization. On the other hand, asyn-
chronous communication model completely decouples the
1/0 and is more akin to a streaming 1/O model. The runtime
spawns send and receive threads and uses a device-appropri-
ate timeout parameter as a flow-control mechanism.
Bridging the PHY and User IP

The PHY (FIG. 1 at 106) is responsible for transferring
data across the software-hardware boundary. Generally, the
logic associated with the PHY 106 is provided by the FPGA
vendor or third party IP vendors who have the liberty to define
their own protocols within the FPGA. Regardless of the
physical interface, there is a single standard hardware inter-

10

15

20

25

30

35

40

45

50

55

60

65

6

face to which the compiler generated HDL code is connected.
This is because designing, developing and debugging such
interfaces in hardware is a far more challenging endeavor
compared to software development where symbolic debug-
gers and high-level tools make analogous work relatively
easier.

The Lime compiler assumes the presence of a canonical
component called the crossbar, and generates a top level
design that connects all user IP to it. In turn, the top level
design with additional IP corresponding to the PHY that is
specific to the board may be extended, e.g., when the EDA
synthesis tool is invoked to generate a bitfile. The XPHY
bridge IP 104 may be extended as well. The latter is a device-
specific IP that is developed for each of the platforms shown
in Table 1. FIG. 2 illustrates the top level design, PHY to user
IP bridge in hardware, that is synthesized for a given device.
XPHY Bridge

The XPHY bridge (FIG. 2 at 202) translates the user-side
PHY interface to match the crossbar interface. The layers
below the XPHY bridge assume a little-endian data format.
Any endianness conversion, if required, is handled in the
XPHY bridge.

Crossbar

The crossbar (FIG. 2 at 204) is a platform-independent
layer that isolates the user IP 206 from the low-level platform-
specific details. It also provides the abstraction of multiple
virtual routes over which different types of payload (data,
messaging, initialization, control) can be transferred between
host and the user IP.

The crossbar 204 includes independent receive (rx) and
transmit (tx) modules. The receive module disassembles an
incoming packet from the PHY 208 and forwards the payload
on one or more routes to the user IP 206. The transmit module
receives data from one or more routes, encapsulates it into
packets and forwards it to the PHY 208. The crossbar 204, for
example, can connect to up to 32 incoming and outgoing
routes in the egress side. The width of each route can be
configured independently by the compiler.

The crossbar 204 uses a ready-acknowledge (rdy-ack) pro-
tocol to interface with PHY and the user application logic.
The rdy signal is asserted whenever the source has valid data
onthe data bus. Assertion of the ack signal indicates readiness
of the sink to accept data. A valid data transfer is marked by
the assertion of rdy and ack in the same clock cycle. The sink
can preemptively assert ack even when the source has no valid
data (rdy is not asserted). The bytevalid signal indicates the
number of valid bytes in the current transfer.

Development LifeCycle

A toolchain (e.g., an integrated development environment
(IDE) that may include a compiler such as Lime and inte-
grated synthesis toolflow) may be provided that integrates the
EDA design flow into the compilation step so that the end-
result of compiling an FPGA-relocated task is a bitfile. A
programmer may specify the intended target either via the
command line interface or the IDE. This target guides the
compiler to instantiate a platform specific top level design
that includes the PHY IP, XPHY bridge, crossbar and the
generated user [Ps.

An example command line invocation of such a toolchain
to compile the HelloWorld code for the Nallatech PCIe280
device may include:

% limec-fpga=nallatech.pcie280 HelloWorld.lime

The process is as follows. First, the compiler generates all
of'the user IP corresponding to the relocated tasks, as well as
the Java bytecodes for the remaining parts of the Lime pro-
gram. Next, it instantiates the crossbar IP using the desired
parameters (e.g., routes and data width) and connects the user

US 9,329,843 B2

7

1P to it. Each relocated task is assigned a unique virtual route
when it is connected to the crossbar, thereby allowing other
tasks to communicate with it using the route id by sending
messages intended for specific routes. Subsequently, a plat-
form specific EDA builder is used to perform the logic syn-
thesis. The target specified on the command line (or through
the IDE) informs the builder of the various characteristics of
the FPGA platform, including the details of the FPGA part
and timing constraints that are to be observed in the top level
design.

Hence, in addition to the platform specific IP that includes
the IOCTL and XPHY bridge, the present disclosure may
provide a platform manifest that encodes the details of the
device to aid the compiler in automatically generating bitfiles
for the FPGA-targeted Lime code. These three components
allow for fully integrating new FPGA devices into the tool-
chain, lowering the engineering burden attributed to FPGA-
based heterogeneous computing. The compiled HelloWorld
program may be run on the targeted device using the com-
mand line:

% lime-fpga=nallatech.pcie280 HelloWorld,

which launches the Java virtual machine (for the host code)
and the Lime runtime to manage the native devices and com-
munication across the software-hardware boundary as
described herein.

Lime Language Review

Lime is a new programming language designed for hetero-
geneous computing. It is a Java-compatible language that
offers many ofthe features commonly found inhigh-level and
object-oriented languages. It also includes a number of new
features that facilitate the compilation and synthesis for
FPGAs among other architectures. The example that follows
illustrates some of the core language constructs that imple-
ment software-hardware bridging capabilities disclosed in
the present disclosure. Those language constructs include
task, connect, and relocate.

TABLE 2

Lime example

public class Hello World {

public static void main(String|[] args) {
Cha.r[] msg = { ’H’,’E’,’L’,’L’,’O’,’,’,’ 5,
’W’,’O’,’R’,’L’,’D’,’!’,’\H’ },

for (char ¢ : msg) {

char lowered = toLowerCase(c);
System.out.print(lowered);

static local char toLowerCase(char ¢) {
return (A’ <=c && c<="2")?
(char) (c+’a’ - "A’) i ¢;

14}

The example Lime program shown in Table 2 converts an
array of characters to lowercase and prints the result to stan-
dard output. The variable msg is initialized to contain a
sequence of letters (lines 3-4), and the loop (line 5) applies
toLowerCase to every character (line 6). The method tol.ow-
erCase (lines 10-13) receives a character and returns its low-
ercased version. Finally, the results are printed to standard
output using a Java system utility System.out.print (line 7).

This program has three parts. First is the generation of the
character sequence, here achieved using a conventional
imperative loop. Second is the actual computation, namely
lowercasing each of the characters. Third is the printing of the
results to the screen. This pattern is generally representative

8

of applications that exhibit producer-consumer parallelism,
also known as pipeline parallelism.

TABLE 3

Lime task graph example

2 public static void main(String|] args) {
char[[]Jmsg = { "H’’E’,)L’,)L’,0",,”,” ",
WO R D Y
var hello = msg.source()
=> ([task toLowerCase])
=>task System.out.print(char);
hello.finish(); // execute and await completion

10

O 00~ Oy W

Lime facilitates the expression of pipeline parallelism
using the task and connect (=>) operators. Hence the code
may be rewritten as shown in Table 3 where the loop is
replaced with an explicit task graph that exposes the compu-
tation and communication making up the pipeline. The task
operator creates a task from an otherwise imperative method
as shown on lines 6 and 7 of Table 3. The first task (line 5) is
an example of a source. In Lime, arrays are first class types
and the source()method creates a task that emits the contents
of'the array in sequence, one character at a time. The task on
line 6 is called a filter. It repeatedly applies toLLowerCase
(Table 2) to every character produced by the source. The
connect operator (=>) connects the output of one task so it
becomes the input to another. This is equivalent to the data-
30 flow one can infer from the loop in Table 2. The final task in
the example is a sink. It consumes the results of the previous
task but produces no output itself. It is worthy to note that the
task operator is applied to methods that may be used in an
imperative context (e.g., System.out.print). This is generally
true for sources and sinks. However, filters require that the
task method is local, meaning that it may not access globally
mutable state. A local method is identified with the local
keyword as shown on line 10 of Table 2. It is an easily
checkable property and when composed with other language
features, it provides a guarantee that filters have strong isola-
tion properties. Namely, a local method that is also static and
whose arguments are all value types is a pure function. A
primitive type (e.g., char) is a value type, as are classes which
are modified with the value keyword. A value type is a recur-
sively immutable and acyclic type: once the value is created,
it does not mutate. Lime provides arrays that are value types,
and these are represented with double brackets as shown on
line 3 of Table 3.

Lime leverages task graphs to partition the computation in
a heterogeneous system, and maps tasks to the architectures
that are best suited for them. A natural mapping of the tasks in
Table 3 for an architecture that includes a CPU and an FPGA
is one that relocates the filter toLowerCase from the host to
the FPGA, and assigns the remaining source and sink tasks to
the host CPU. In practice, the compiler or runtime must be
cognizant of the characteristics of the task graph and the
communication costs to transfer data between the CPU and
the FPGA.

The Lime compiler currently relies on the programmer to
express their desired mapping from tasks to architectures. By
default, all tasks execute on the host. However, the program-
mer can relocate a task to another target architecture (e.g.,
FPGA) by surrounding it with “([” and “])” as shown on line
5 6 of Table 3. The brackets instruct the compiler to statically
elaborate the encompassed task graph, and to generate code
for the desired target architecture which is specified either on

25

35

50

55

60

o

US 9,329,843 B2

9

the command line or through a Lime Development Tool, an
Eclipse-based IDE (integrated development environment).

Lime programs are compiled to Java bytecode by default
and hence the tasks that are mapped to the host will execute in
a Java virtual machine (JVM). The relocated tasks will run on
their corresponding native device (e.g., FPGA). A service
layer that spans software and hardware presented in the
present disclosure allows the Lime runtime automatically
manage the communication between the JVM and the native
device.

The Lime compiler and runtime are designed to (1) signifi-
cantly improve the programmer experience when targeting
heterogeneous systems that include FPGAs, and (2) rapidly
support new FPGA computing platforms as they become
available. One of the ways this is achieved is through com-
plete vertical integration of the required IP building blocks,
EDA logic synthesis tools, and device drivers with a tool-
chain. The Lime compiler generates Verilog (hardware
description language) for tasks that are relocated to the
FPGA. The Verilog is a behavioral description of the corre-
sponding user code, and as such, it is called the user IP. The
generated IP may not be useful as a standalone component if
the end goal is to co-execute tasks across architectures. The
host tasks should communicate data to the relocated task, and
similarly, the relocated task should communicate data back to
the host. In Lime, this communication is represented by the
connect operators that describe the flow of data between
tasks. Tasks that execute on the host may communicate
directly through shared-memory. In contrast, tasks that
execute in an FPGA typically lack direct access to the host
memory, and data is transported to the device over a physical
layer (PHY) by the device driver. FIG. 3 shows the mapping
of tasks that corresponds to the HelloWorld example from
Table 3. “toLowerCase” task 302 executed on the FPGA 304,
while “msg.source” 306 and “system.out.print” 308 are
executed in the CPU 310. The divide between the CPU and
the FPGA represents the PHY which is bridged to enable
computing on such heterogeneous systems. Hence the com-
piler may generate the user IP, and also integrate it with a
hardware service layer that provides I/O capabilities so that
the user IP may exchange data with the host (e.g., CPU).

Lime language is platform agnostic. The partitioning of
Lime code between host and device is not, and tasks may be
migrated between the device and host, dynamically and trans-
parently. This is unique and meaningful because it permits the
Lime runtime to respond to changes in the application work-
ing set dynamically, by migrating tasks to where they may run
best. In addition, in multi-user systems where the devices are
shared, this ability to migrate task seamlessly throughout the
system provides a mechanism for sharing and load balancing.
In another aspect, Lime provides language features that are
specifically influenced by HDLs. These include the ability to
express pipeline parallelism easily, in addition to data and bit
level parallelism. Yet in another aspect, a Lime API may
support both synchronization protocols and a completely
asynchronous streaming model using 1/O timeouts. This sim-
plifies the amount of work one has to do to interface the Lime
IP bridge to the underlying PHY and device driver.

The above described a canonical interface for bridging
software and hardware in heterogeneous FPGA-based sys-
tems referred to as an IP bridge. The design of the IP bridge is
such that it is applicable across a wide range of FPGA plat-
forms available off-the-shelf. For example, versions of this
interface are implemented for PCle and UART attached
FPGAs, as well as HDL simulators. The IP bridge helps to
provide a single integrated development framework for het-
erogeneous systems using a programming language such as

10

35

40

45

10

the Lime programming language. The Lime compiler is
capable of fully driving EDA tools to synthesize bitfiles from
high-level Lime code. This lowers the burden of designing
applications that co-execute between a conventional host pro-
cessor and an FPGA. The space overhead of the IP bridge,
measured in terms of FPGA resource utilization, is very
small. The cost of the abstractions in the Lime runtime is also
well amortized for large packet sizes.

An example of data path between software and hardware
may be as follows: Data is sent across the Java Native Inter-
face from the main (JVM) program to native C code which
implements the software IOCTL layer. The data is commu-
nicated from the software IOCTL layer to the device drivers,
which move the data via DMA to the FPGA. The data is
routed through the hardware PHY and crossbar to a loopback
circuit. In each iteration, the data then travels through the
same layers in the reverse direction, back to the main pro-
gram.

FIG. 4 is a flow diagram illustrating a method ofthe present
disclosure in one embodiment for providing a communica-
tion stack for software-hardware co-execution on heteroge-
neous computing systems with processors and reconfigurable
logic (e.g., FPGAs). At 402, hardware user code correspond-
ing to a task to be relocated to the reconfigurable logic is
generated. For instance, as described above, a compiler such
as the Lime compiler may generate a hardware description
language corresponding to the task to be relocated in a pro-
gram being compiled. At 404, a crossbar operable to function
as a platform independent communication layer is instanti-
ated. The crossbar may be instantiated with associated param-
eters comprising one or more routes and associated data
widths. At 406, the hardware user code is connected to the
crossbar and assigned a unique virtual route in the crossbar.
Communication to the hardware user code may be performed
via the unique virtual route or using a unique virtual route
identifier. At 408, a physical interface (PHY) interfacing to
the reconfigurable logic is instantiated. At 410, a physical
interface bridge (XPHY bridge) is instantiated which con-
nects the crossbar and the physical interface via a platform
specific translation layer specific to the reconfigurable logic.

As described above, a communication stack may be pre-
sented for co-execution of a user application on a heteroge-
neous system having software (processors) and hardware (re-
configurable logic such as FPGA) components. The
communication between the SW and HW happens over the
physical interface. The HW stack includes a platform inde-
pendent layer called crossbar to which the hardware part of
the user application logic interfaces to. The crossbar provides
the abstraction of virtual routes allowing several independent
channels of communication between the user application
code running in SW and HW. The SW stack includes a light
weight [/O control layer, which provides the ability to open
and close the HW device; and read and write data chunks
between SW and HW part of the user application logic.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, a software embodiment (including firmware,
resident software, micro-code, etc.) or an embodiment com-
bining software and hardware aspects that may all generally
be referred to herein as a “circuit,” “module” or “system.”
Furthermore, aspects of the present invention may take the
form of a computer program product embodied in one or more
computer readable medium(s) having computer readable pro-
gram code embodied thereon.

US 9,329,843 B2

11

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
orany suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be
any tangible medium that can contain, or store a program for
use by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages, a scripting language such
as Perl, VBS or similar languages, and/or functional lan-
guages such as Lisp and ML and logic-oriented languages
such as Prolog. The program code may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

Aspects of the present invention are described with refer-
ence to flowchart illustrations and/or block diagrams of meth-
ods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be under-
stood that each block of the flowchart illustrations and/or
block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by
computer program instructions. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of
the computer or other programmable data processing appa-

20

30

35

40

45

12

ratus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The computer program product may comprise all the
respective features enabling the implementation of the meth-
odology described herein, and which—when loaded in a
computer system—is able to carry out the methods. Com-
puter program, software program, program, or software, in
the present context means any expression, in any language,
code or notation, of a set of instructions intended to cause a
system having an information processing capability to per-
form aparticular function either directly or after either or both
of'the following: (a) conversion to another language, code or
notation; and/or (b) reproduction in a difterent material form.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements, if any, in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of

US 9,329,843 B2

13

the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

Various aspects of the present disclosure may be embodied
as a program, software, or computer instructions embodied in
a computer or machine usable or readable medium, which
causes the computer or machine to perform the steps of the
method when executed on the computer, processor, and/or
machine. A program storage device readable by a machine,
tangibly embodying a program of instructions executable by
the machine to perform various functionalities and methods
described in the present disclosure is also provided.

The system and method of the present disclosure may be
implemented and run on a general-purpose computer or spe-
cial-purpose computer system. The terms “computer system”
and “computer network™ as may be used in the present appli-
cation may include a variety of combinations of fixed and/or
portable computer hardware, software, peripherals, and stor-
age devices. The computer system may include a plurality of
individual components that are networked or otherwise
linked to perform collaboratively, or may include one or more
stand-alone components. The hardware and software compo-
nents of the computer system of the present application may
include and may be included within fixed and portable
devices such as desktop, laptop, and/or server. A module may
be acomponent of a device, software, program, or system that
implements some “functionality”, which can be embodied as
software, hardware, firmware, electronic circuitry, or etc.

The embodiments described above are illustrative
examples and it should not be construed that the present
invention is limited to these particular embodiments. Thus,
various changes and modifications may be effected by one
skilled in the art without departing from the spirit or scope of
the invention as defined in the appended claims.

We claim:

1. A method for a communication stack for software-hard-
ware co-execution on heterogeneous computing systems with
processors and reconfigurable logic, comprising:

generating a hardware user code corresponding to a task to

be relocated to the reconfigurable logic;

instantiating a crossbar operable to function as a platform

independent communication layer, the crossbar instan-
tiated with associated parameters comprising one or
more routes and associated data widths, the crossbar

20

25

30

40

45

14

residing in hardware and operable to isolate the hard-
ware user code from low-level platform-specific details
and provide multiple virtual routes over which different
types of payload can be transferred between a host pro-
cessor and the hardware user code running on the recon-
figurable logic;

connecting the hardware user code to the crossbar and
assigning a unique virtual route in the crossbar to the
hardware user code, wherein communication to the
hardware user code is performed via the unique virtual
route;

communicating data between hardware user code running
on one or more of the processors and the hardware user
code running on the reconfigurable logic via the
assigned unique virtual route using an input-output con-
trol interface implementing a set of procedures;

instantiating a physical interface interfacing to the recon-
figurable logic;

and instantiating a physical interface bridge to connect to
the crossbar and the physical interface, the physical
interface bridge comprising a platform specific transla-
tion layer connecting the crossbar and the physical inter-
face via a platform specific translation layer specific to
the reconfigurable logic.

2. The method of claim 1, wherein the hardware user code
is generated by a compiler capable of compiling a program
unaware of communication protocols into a design consistent
with an API associated with the crossbar.

3. The method of claim 2, wherein the set of procedures
supports synchronous and asynchronous communications.

4. The method of claim 2, wherein the input-output control
interface is implemented in a compiler enabled to compile a
program containing instructions for running on one or more
of'the processors and instructions to be relocated to the recon-
figurable logic.

5. The method of claim 2, wherein the set of procedures
comprises:

an open procedure operable to load a bitfile onto the recon-
figurable logic and reserve one or more resources of the
reconfigurable logic, the open procedure further oper-
able to return a handle used for subsequent communica-
tion with the reconfigurable logic;

a close procedure operable to release the one or more
resources;

a send procedure operable to transfer contents of a given
send buffer starting at a specified send offset, to the
reconfigurable logic;

and a receive procedure operable to request that up to a
specified length number of bytes be read from the recon-
figurable logic and written into a given receive buffer
starting at a specified receive offset.

#* #* #* #* #*

